Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Mol Med ; 16(4): 870-884, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462666

ABSTRACT

Recessive dystrophic epidermolysis bullosa (RDEB) is a rare inherited skin disease characterized by defects in type VII collagen leading to a range of fibrotic pathologies resulting from skin fragility, aberrant wound healing, and altered dermal fibroblast physiology. Using a novel in vitro model of fibrosis based on endogenously produced extracellular matrix, we screened an FDA-approved compound library and identified antivirals as a class of drug not previously associated with anti-fibrotic action. Preclinical validation of our lead hit, daclatasvir, in a mouse model of RDEB demonstrated significant improvement in fibrosis as well as overall quality of life with increased survival, weight gain and activity, and a decrease in pruritus-induced hair loss. Immunohistochemical assessment of daclatasvir-treated RDEB mouse skin showed a reduction in fibrotic markers, which was supported by in vitro data demonstrating TGFß pathway targeting and a reduction of total collagen retained in the extracellular matrix. Our data support the clinical development of antivirals for the treatment of patients with RDEB and potentially other fibrotic diseases.


Subject(s)
Carbamates , Epidermolysis Bullosa Dystrophica , Imidazoles , Pyrrolidines , Valine/analogs & derivatives , Humans , Animals , Mice , Epidermolysis Bullosa Dystrophica/drug therapy , Epidermolysis Bullosa Dystrophica/pathology , Quality of Life , Collagen Type VII/metabolism , Collagen Type VII/therapeutic use , Fibrosis , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Skin/metabolism , Skin/pathology
2.
Biomolecules ; 13(5)2023 04 25.
Article in English | MEDLINE | ID: mdl-37238610

ABSTRACT

Junctional epidermolysis bullosa (JEB) patients experience skin and epithelial fragility due to a pathological deficiency in genes associated with epidermal adhesion. Disease severity ranges from post-natal lethality to localized skin involvement with persistent blistering followed by granulation tissue formation and atrophic scarring. We evaluated the potential of utilizing Trametinib, an MEK inhibitor previously shown to target fibrosis, with and without the documented EB-anti-fibrotic Losartan for reducing disease severity in a mouse model of JEB; Lamc2jeb mice. We found that Trametinib treatment accelerated disease onset and decreased epidermal thickness, which was in large part ameliorated by Losartan treatment. Interestingly, a range of disease severity was observed in Trametinib-treated animals that tracked with epidermal thickness; those animals grouped with higher disease severity had thinner epidermis. To examine if the difference in severity was related to inflammation, we conducted immunohistochemistry for the immune cell markers CD3, CD4, CD8, and CD45 as well as the fibrotic marker αSMA in mouse ears. We used a positive pixel algorithm to analyze the resulting images and demonstrated that Trametinib caused a non-significant reduction in CD4 expression that inversely tracked with increased fibrotic severity. With the addition of Losartan to Trametinib, CD4 expression was similar to control. Together, these data suggest that Trametinib causes a reduction in both epidermal proliferation and immune cell infiltration/proliferation, with concurrent acceleration of skin fragility, while Losartan counteracts Trametinib's adverse effects in a mouse model of JEB.


Subject(s)
Epidermolysis Bullosa, Junctional , Mice , Animals , Epidermolysis Bullosa, Junctional/genetics , Epidermolysis Bullosa, Junctional/pathology , Losartan , Skin/pathology , Epidermis
3.
Matrix Biol ; 111: 226-244, 2022 08.
Article in English | MEDLINE | ID: mdl-35779741

ABSTRACT

Lack of type VII collagen (C7) disrupts cellular proteostasis yet the mechanism remains undescribed. By studying the relationship between C7 and the extracellular matrix (ECM)-associated proteins thrombospondin-1 (TSP1), type XII collagen (C12) and tissue transglutaminase (TGM2) in primary human dermal fibroblasts from multiple donors with or without the genetic disease recessive dystrophic epidermolysis bullosa (RDEB) (n=31), we demonstrate that secretion of each of these proteins is increased in the presence of C7. In dermal fibroblasts isolated from patients with RDEB, where C7 is absent or defective, association with the COPII outer coat protein SEC31 and ultimately secretion of each of these ECM-associated proteins is reduced and intracellular levels are increased. In RDEB fibroblasts, overall collagen secretion (as determined by the levels of hydroxyproline in the media) is unchanged while traffic from the ER to Golgi of TSP1, C12 and TGM2 occurs in a type I collagen (C1) dependent manner. In normal fibroblasts association of TSP1, C12 and TGM2 with the ER exit site transmembrane protein Transport ANd Golgi Organization-1 (TANGO1) as determined by proximity ligation assays, requires C7. In the absence of wild-type C7, or when ECM-associated proteins are overexpressed, C1 proximity and intracellular levels increase resulting in elevated cellular stress responses and elevated TGFß signaling. Collectively, these data demonstrate a role for C7 in loading COPII vesicle cargo and provides a mechanism for disrupted proteostasis, elevated cellular stress and increased TGFß signaling in patients with RDEB. Furthermore, our data point to a threshold of cargo loading that can be exceeded with increased protein levels leading to pathological outcomes in otherwise normal cells.


Subject(s)
Epidermolysis Bullosa Dystrophica , Proteostasis , Collagen Type VII/genetics , Collagen Type VII/metabolism , Epidermolysis Bullosa Dystrophica/genetics , Fibroblasts/metabolism , Humans , Transforming Growth Factor beta/metabolism , Transglutaminases/genetics , Transglutaminases/metabolism
4.
Int J Mol Sci ; 22(10)2021 May 12.
Article in English | MEDLINE | ID: mdl-34065916

ABSTRACT

Recessive Dystrophic Epidermolysis Bullosa (RDEB) is a devastating skin blistering disease caused by mutations in the gene encoding type VII collagen (C7), leading to epidermal fragility, trauma-induced blistering, and long term, hard-to-heal wounds. Fibrosis develops rapidly in RDEB skin and contributes to both chronic wounds, which emerge after cycles of repetitive wound and scar formation, and squamous cell carcinoma-the single biggest cause of death in this patient group. The molecular pathways disrupted in a broad spectrum of fibrotic disease are also disrupted in RDEB, and squamous cell carcinomas arising in RDEB are thus far molecularly indistinct from other sub-types of aggressive squamous cell carcinoma (SCC). Collectively these data demonstrate RDEB is a model for understanding the molecular basis of both fibrosis and rapidly developing aggressive cancer. A number of studies have shown that RDEB pathogenesis is driven by a radical change in extracellular matrix (ECM) composition and increased transforming growth factor-beta (TGFß) signaling that is a direct result of C7 loss-of-function in dermal fibroblasts. However, the exact mechanism of how C7 loss results in extensive fibrosis is unclear, particularly how TGFß signaling is activated and then sustained through complex networks of cell-cell interaction not limited to the traditional fibrotic protagonist, the dermal fibroblast. Continued study of this rare disease will likely yield paradigms relevant to more common pathologies.


Subject(s)
Carcinoma, Squamous Cell/metabolism , Collagen Type VII/genetics , Epidermolysis Bullosa Dystrophica/complications , Signal Transduction , Skin Neoplasms/metabolism , Carcinoma, Squamous Cell/etiology , Carcinoma, Squamous Cell/genetics , Collagen Type VII/metabolism , Epidermolysis Bullosa Dystrophica/genetics , Epidermolysis Bullosa Dystrophica/metabolism , Extracellular Matrix/metabolism , Fibrosis , Gene Expression Regulation, Neoplastic , Humans , Mutation , Skin Neoplasms/etiology , Skin Neoplasms/genetics , Transforming Growth Factor beta/metabolism , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL
...